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The Green's-function technique of Slater and Koster is used to formulate the Hartree-Fock problem for 
impurities in transition metals. Partial account is taken of the many-band structure of the transition metals 
and of electron-electron correlation. Application is made to the solution of the self-consistent-field equations 
in simple cases, to a generalized condition for magnetization of an impurity, to polarization of near-neighbor 
atoms, to the Knight shift of impurity atoms, and to the occurrence of a magnetic moment as a function of 
electron concentration for Fe dissolved in the bcc 4d transition metals. It is concluded that the effective ex­
change energies that act to magnetize transition-metal impurities are no greater than 1-2 eV. 

I. INTRODUCTION 

THE electronic structure of widely separated im­
purities in transition metals has received in­

creasing attention in recent years. This interest is in 
response to expanding experimental measurements of 
susceptibility, specific heat, conductivity, nuclear mag­
netic resonance, Mossbauer effect, and neutron diffrac­
tion. Some theoretical progress has been made in the 
analysis of these observations, but the work is still in 
an early stage. This is not surprising since a real under­
standing of the electronic structure of the pure transi­
tion metals is just beginning to emerge. Work by 
Friedel,1 Kohn and Vosko,2 and many others3 has 
established some of the basic ideas concerning the 
electronic structure of impurities in metals, but these 
efforts have been most appropriately applied to the 
study of s-p band metals and to the asymptotic behavior 
of wave functions around an impurity. More recent 
work by Anderson,4 Wolf,5 and Clogston6,7 has applied 
methods better suited to the narrow bands encountered 
in d-band and /-band metals. In particular, the Green's 
function method introduced by Slater and Koster8-10 

has been developed and applied in a preliminary way to 
various impurity problems, including the interesting 
question of magnetized local states.4-6 

In its simplest form, the Green's function method has 
been used by Wolff5 to determine the wave functions of 
a single band of electrons in the presence of an impurity 
atom under the assumption that the impurity potential 
is closely confined to the site of the foreign atom. These 
wave functions are then used to determine the self-
consistent Hartree-Fock potential for the impurity. The 

method has been applied principally to discussing the 
conditions under which an isolated impurity atom will 
magnetize when dissolved in a transition metal solute. 
In this paper we want to extend the discussion and make 
it more realistic by taking partial account of correlation 
and the many-band structure of the transition metals. 
We can then give a fuller account of the electronic 
events that occur around an impurity atom. We shall 
also give a more general account of the conditions under 
which an impurity will magnetize, a calculation of the 
Knight shift of an impurity atom showing how it can 
depart widely from simple theory, and a semiquanti­
tative discussion of the magnetic moment associated 
with an iron atom dissolved in the body-centered-cubic 
4d transition metals. 

II. THEORY 

a. Exact Hartree-Fock Theory 

The major results of the Green's function method can 
be recapitulated as follows.8-10 If Enk° are the unper­
turbed eigenvalues for some pure metal, the perturbed 
wave functions for energy E=Enk° and spin <r are 
expanded in terms of the Wannier functions Wn(j— ra) 
^Wna(t) for band n and site a. 

1 
*nk,(r) = — - £ Am.(ra)Wma(x), (1) 

\/N ma 

where N is the number of atoms in the crystal. Then 
Am<r(ra) is given by 

Am<,(ra) = 8nmeiktTa+T, GmE(ta-tb)cm(r(rh), (2) 
1 P. F. Casteljan and J. Friedel, J. Phys. Radium 17, 27 (1956); ^hor* 

J. Friedel, Can. J. Phys. 39, 1190 (1956); T. Phys. Radium 19, 573 w n e r e 

(1958); Nuovo Cimenfo Suppl. 2 7, 287 (1958). These papers 
contain extensive bibliographies to early work. 

2 W. Kohn and S. H. Vosko, Phys. Rev. 119, 912 (1960). 
3 Summaries of recent work and many references may be found 

in the volume Metallic Solid Solutions, edited by J. Friedel and A. 
Guinier (W. A. Benjamin, Inc., New York, 1963). 

4 P. W. Anderson, Phys. Rev. 124, 41 (1961). 
6 P. A. Wolff, Phys. Rev. 124, 1030 (1961). 
6 A. M. Clogston, B. T. Matthias, M. Peter, H. J. Williams, 

E. Corenzwit, and R. C. Sherwood, Phys. Rev. 125, 541 (1962). 
7 A. M. Clogston, Phys. Rev. 125, 439 (1962). 
8 G. F. Koster and J. C. Slater, Phys. Rev. 95, 1167 (1954). 
9 G. F. Koster, Phys. Rev. 95, 1436 (1954). 
10 G. F. Koster and J. C. Slater, Phys. Rev. 96, 1208 (1954). 

1 
GnE(r)=-Z-

pik'r 

(3) 
N k Enk«-E 

and the cm„{rb) satisfy the difference equations 

c>.{rh)+T.<yrmt\v**\Wu) 
Ic 

X[Snz^k'r<+i: GiB{tc-n)cUn)]=Q. (4) 
d 

F<r
HF is the self-consistent Hartree-Fock potential for 

1417 



A 1418 A . M . C L O G S T O N 

spin cr and is given by 

(Wna\V**\Wmb) 

= (Wna\-Ze2/r\Wmb) 

+ Z l(*MWna\*/ria\*ik*Wmh) 

-(^ikWna\e
2/r12\^lkoWmb)2 

- E l{*i±*Wna\eyrl2\Wml&lkff) 

~(*ii?Wna\e>/rn\Wml&lk<>)-]. (5) 
Ik 

The direct potential due to the impurity nucleus is 
—Ze2/r, and the unperturbed wave functions are ^rnk°. 
The summations on k extend over filled states up to.the 
Fermi level. In principle, the systems of Eqs. (4) and (5) 
can be solved simultaneously giving a complete solution 
of the impurity problem within the Hartree-Fock 
approximation. 

b. Approximate Hartree-Fock Theory 

In order to get a manageable theory, we must intro­
duce some drastic assumptions. We suppose, therefore, 
that the impurity potential is large only near the im­
purity site ro=0, and that only diagonal elements of 
F<rHF exist between the various bands. These are 
essentially the same assumptions made by Wolff,5 except 
that we consider several bands to be important in 
screening the impurity. We thus retain in an approxi­
mate way some important features of the many-band 
structure, as is seen below. We have, then, 

and 

(Wma\V™\Wm0) 

l+(Wm0\V™\Wm0)GmE(0) 

(Wm0\V^\Wm0)GmE(ra) 

(6) 

(7) 
l+(Wm0\V^\Wmo)GmE(0) 

We next rewrite Eq. (1) as 

+ E ^ U ( r a ) P F n a ( r ) ] (8) 

and define Vn9=(Wno\V^v\Wno) so that 

i r i 
™nka --

VNll+VncGnB(0) 
Wnt>{r) 

+ E An,{ra)Wna(x) . (9) 

We now further approximate by using in Eq. (5) only 
that part of *•«„ depending on PF'jo(r). Equation (5) 

then becomes 

Vn,= (Wn0\-Ze*/r\Wno) 

+ - E \(WmWn0\e*/r12\WKWno) 
IV lEo' L 

e 2 ! 

N 

-8<T<T'( wl0wn0\—\wn0wm •)] 

x[| 
1 

n+VvGuQ) 

The Green's function G„j?(0) may be written 

nn{E')dE' 

- ' ] • 

C ( 0 ) = / 
J E'-E 

(10) 

(11) 

where rjn(E) is the density of states per atom in the 
unperturbed band n and the integral is extended over 
the whole band. The principal part of this integral is set 
equal to —In(E) so that 

GnE(0)=-In(E) + iT7Jn(E). (12) 

A discussion of the functional form of In(E) is given in 
Ref. 7. Equation (10) is now written 

V„=(WM\-Z#/r\W,*) 

+Zt(WKWn0\<*/m\WU)Wno) 
Iff' 

-d^iWioWnoleVrnlWnoWnK 

'Jvi(E)[ 1/TV2 

— 1 
( / i - i /P ' i .OH-Onn) 2 J 

dE. (13) 

The integral in Eq. (13) is the number of electrons Nu 
of spin a accumulated on the impurity site by the 
perturbation from band /. 

We next further simplify Eq. (13) by assuming that 
all the Coulomb integrals are equal to U, the exchange 
integrals between identical Wannier functions are equal 
to / , and the exchange integrals between differ­
ent Wannier functions are equal to K. Setting 
(Wno\ -Ze2/r\Wno) = -ZF, we have 

Vn^-ZF+ZiUS^Nn,, 

+ E (U-t>„,K)Nm,>. (14) 

We suppose specifically that / is much smaller than 
U. This assumption is contrary to previous work,4-6 in 
which / has been taken equal to U. I t seems evident, 
however, that / must be greatly reduced by correlation. 
For an iron atom in the configuration ds, F is about 30 
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eV and U is about 20 eV,11 while we present evidence 
below that / cannot be larger than 1-2 eV. The ex­
change integral K will probably be smaller than the 
exchange integral between orthogonal orbits in Fe, 
which is about 0.6 eV, and therefore is probably in the 
range 0.1 to 0.5 eV. It also becomes evident below that 
U cannot be greatly reduced below its free-atom value 
without changing the nature of the impurity problem in 
a way contrary to the general experimental evidence. It 
is to be expected that correlation should have a much 
larger effect upon the exchange integrals than upon the 
Coulomb integrals. A discussion of this important point 
has been given by Phillips12 in connection with the effect 
of correlation on the self-consistent field problem of a 
pure metal. 

c. Approximation for Nn<r 

The total charge of spin a in states brought below the 
Fermi level by the perturbation is given by 1/w times 
the phase shift yn<r(Ef) of electrons at the Fermi 
surface.7 The phase shift is given by 

yn<r{Ef)=-tdixrl 
injn(Ef) 

In(Ef)-l/Vn 

(15) 

For most simple band shapes (l/ir)yn<r(Ef) is a good 
approximation to Nn<r- The two quantities are exactly 
equal for a Lorentzian density of states and very similar 
in other cases. In order to avoid discussing specific band 
shapes in what follows, we approximate by taking 
# » , = (l/7r)yn*(Ef). If we set an = In(Ef)/irrin(Ef), 
we have therefore 

«» — I } • (16) tf„.= (l/T)tan-* 
TVn(Ef)V, •n 

In Fig. 1 we present a set of curves giving Nn* as a 
function of wr]n(Ef)Vna for various values of an. The 
curves are drawn for Vna negative. A set of curves for 
Vna positive can be obtained by reversing the signs of 
Vna, «n and Nn*. For Vn<r very large, Nn<, saturates at a 
value 7T"1 tan""1(l/a»). This is a measure of how many 
states per atom lie above the Fermi level. Thus large 
positive values of a correspond to a nearly filled band, 
and large negative values of a to a nearly empty band. 
The impurity cannot ever depress below the Fermi level 
more states per band than were available in the unper­
turbed band above the Fermi level. For Vna small, 
Nna— -~yn(Ef)Vn*, which is just the Thomas-Fermi 
assumption. 

d. Perturbation of Nearest Neighbors 

We see below that an impurity will not usually be 
completely screened on the impurity site. In that case a 

11R. E. Watson, Technical Report No. 12, Solid State and 
Molecular Theory Group—MIT, Cambridge, Massachusetts, 1959 
(unpublished) and Phys. Rev. 118, 1036 (1960). 

12 J. C. Phillips, Phys. Rev. 123, 420 (1961). 
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FIG. 1. A plot of N-t/r tsLTT1la-l/irv(Ef)V2~1 as a function 
of irn (Ef) V for various values of a. For positive values of irrj (Ef) V} 
reverse the sign of N and a. 

perturbation extends to the nearest-neighbor site, and a 
subsidiary self-consistent potential problem will exist. 
Returning to Eq. (5), we may write for the direct po­
tential at a neighboring site (a), due to the self-con­
sistent potential established at r= 0, 

(Wna\V™\Wna) 

~(Wna\-Zeyr\Wna) 

+ Z t(*MW„\*/rn\*lh9.W„) 

llna' 

- ( * / k W n a k / r 1 2 | * J k W n a ) ] 

Ik 

• (*«W*« | e2/r121 Wn<&lk»)-]. (17) 

We approximate once again by replacing SPu, by the 
first term of Eq. (9) and then obtain 

(Wna\V™\Wna) 

= (Wna\-Z<?/r\Wna) 

+Zl(WioWni,\e>/rn\WmWna) 
w 

-8„,(Wl0Wna\e*/r12\WnaWlQnNlff,. (18) 

This equation can be written approximately as 

(Wna\ FfHF| Wna)=(#/R)(-Z+Nt + Ni)-jNf , (19) 

where R is the distance to site a, iYff=^„ A7
n<r, and we 

have set (WioWna \ #/rn | WnaWio) = j for all I and n. 
Let us define the direct potential at the nearest-

neighbor site *>„== (Wna\ F«rHF| Wna), so that 

vt=(*/R)(-Z+Ni+Ni)-jNi. (20) 
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Usually, vv will be small enough so that one can write 
for the nearest-neighbor site from Eqs. (14) and (16), 

NnJ=-Vn{ES)VnJ 

V„' = v,+ j : (U'-8„J')Nmy, 

(21) 

(22) 

where we have taken K'=J' for simplicity. These 
equations may be solved simultaneously to give 

Z(A rmt' + ^ r o i ' ) = -
*>t+n 

l+(2U'-J')H(Efy 
: « £ / ) , (23) 

(»t—n) 

1 - £ ( £ / ) / 
(24) 

Here the primes denote quantities appropriate for the 
neighbor, or regular, lattice site, and %(Ef) is the total 
density of states for all bands defined by %(Ef) 
= J2nVn(Ef). Equations (23) and (24) are used below 
in discussing the distribution of shielding charge over 
the nearest-neighbor atoms to an impurity and in con­
sidering the polarization of neighbor atoms to a mag­
netic impurity. 

In this discussion of the nearest-neighbor atoms, we 
have presumed that each neighbor atom is acting inde­
pendently of all other neighbors. Actually this is not so. 
Complicated interference effects exist between the wave 

functions at the various neighbor sites that have been 
discussed by Slater and Koster.10 These effects are 
usually rather small and are neglected for simplicity. 

e. One Dominant Band 

I t may happen in an impurity problem that the 
burden of shielding the impurity rests largely upon one 
dominant band. This is the case if all other bands 
present a low density of states at the Fermi level by 
reason of being nearly or completely filled or empty. In 
this case, let us take n= 1 to be the dominant band and 
n=l,.,tn, ••• to be the remaining bands. We suppose 
r)i(Ef) to be small enough so that Ni<r=—7]i(Ef)Vi<r., 
Then Eq. (14) may be written 

V1,= -ZF+Z(U-8aaJ)Nu> 
a' 

-H{U-h<,<,,K)ni{E,)Vla,, (25) 
la' 

Vi.= -ZF-Y.(U-h.,J)rn{E,)Vu. 
a' 

+?l(U-6„.K)Nu> 
a! 

- E (U-8^K)r,m(Ef)Vm<r-. (26) 
m^lcr' 

These two equations can be solved simultaneously, with 
the results 

h(V»+Vu)=-

( F u - F u ) = -

ZF 2U-J 

1+(2U-K)P 1+(2U-K)P 

J 

• 2U-K 
1 + (K-J)0 

. 2U-J 
WH+NU) 

l - i f /3 1 

• K 
l+-(K-J)p 

. J 

vi(Ef) 

[ l - ( / - X > u ] [ l + ( 2 i 7 - - i i 0 / 3 ] 

Kvi(Ef) 

(Nit-Nu) 

£-ZF+(2U-K)h(Nn+Nu)l 

(27) 

where 
Zl-(J-K)r,tJl-m 

Vi(Ef) 

i l-(J-K)Vl(Ef) 

If, for simplicity, we again place K=J, the four equations can be put in the form 

h(Vlt+Vu)={l/ll+(2U-J)0]}l-ZF+.(2U-J)i(Nlt+Nu)2 

(Vit-Vu)=-ZJ/(i.-m3(Nu-Nu) 

h(Nn+Nn)=- {vi(Ef)/[.l+ (2U-J)0})Z-ZF+ (2U-J)UNn+Nu)3 

(N„-Nu)=lJfi,(E,)/(l-JpmNit-Nli) 

(28) 

(29). 

(30) 

(31) 

where now P=JLiVi(Ef). If we place ,8=0 in Eq. (30), 
we obtain the appropriate relations for a single band, as 
would be found directly from Eq. (14). I t is clear that the second of Eqs. (30) are enhanced by the presence of 
the effect of the other bands is to shield the potentials the other bands. 

-ZF and (2U—J) experienced by band 1. The mag­
netic effects, however, which, we see below, derive from 
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I t should be remarked here that this analysis remains 
approximately correct even if one of the low-state 
density subsidiary bands has the character of a wide s 
band. In that case, the Fourier transform of the self-
consistent charge density of one spin is 

p(q)=V(q)F(q), (32) 

where V(q) is the Fourier transform of the self-con­
sistent potential. F(q) is given by 

1 flk+q—Tljc 

v k Ek+q—Ek 

(33) 

where v is the volume of the system and nk is the 
occupation number of state Ek* One has 

limP(g) = - ( l / O M £ / ) , 
g->0 

where r)(E/) is the s-band density of states per atom 
and 12 is the atomic volume. The total charge accumu­
lated from the s band is then 

vp(0) = -(v/Q)V(0)ri{Ef). (34) 

Since the self-consistent potential including contribu­
tions from the s band will be closely confined to the 
impurity site, (v/Q)V(0) will be approximately the 
same as the self-consistent potential experienced by the 
d-bands, so that Eq. (34) is consistent with the as­
sumptions made earlier in this section. 

III. APPLICATIONS 

a. Some Simple Examples 

In this section, we consider a simple case of an im­
purity problem to illustrate the range of electronic 
events that may occur around an impurity. We consider 
first a single band of electrons and a nonmagnetic case in 
which Nt = Ni = N and F t = F * = F. Equations (14) 
and (16) then become 

V=-ZF+(2U-J)N, 

<irr)(Ef)V-
^ ^ ( l / ^ t a n - i j u 1 . 

1L TviEAVA J 

(35) 

(36) 

These two equations must be solved simultaneously to 
find V and N. As an example, we take the valence 
contrast of the impurity Z = l and adopt the values 
F = 30 eV, U=20 eV, and 7 = 2 eV. We furthermore 
consider a Lorentzian band for which 

V(E) = 
1 1 

T T A I + C E / A ) 2 

l (£/A) 

A 1+CE/A) 2 ' 

a=(Ef/A), 

(37) 

(38) 

(39) 

.0.6 

0.4 

-0.2 

-0.4 

2U-J 2U-J 
a=-i .o ^^^^ 

N=4- TAN-l[a r-r-~r \ 
[_ n L 7T7?(Ef)vJ \ 

a = -r.oo \ 

l. , i i i i i 
- 5 - 4 - 3 - 2 - 1 0 1 2 

7T77(Ef)V 

FIG. 2. Solution of Eqs. (35) and (36) in text for F=30, J7=20, 
/ = 2 , Z = l, a = - l , and 7n7(£/)=0.5. 

so that A=l/[7T7?(JE/)(l+a2)~). Suppose we chose 
irrj{Ef) = 0.5 states/eV-atom, a value typical of 4d-band 
metals, and a= — 1. Then the bund has a width of 1 eV 
and is J filled. In Fig. 2, we show a curve for N as a 
function of wr}(Ef)V for a= —1.- Equation (35) is also 
shown as a straight line of slope l/[w7j(Ef)(2U—/)], 
intersecting the axis of ordinates at ZF/(2U—J). The 
self-consistent potential determined by the intersection 
of the two curves at point A is —4.5 eV, contrasted 
with the direct impurity potential —ZF= —30 eV. The 
number of electrons accumulated around the impurity 
is 2N =1.32, contrasted with the number Z = l needed 
to just shield the impurity completely. 

If exchange effects were ignored ( 7 = 0 ) , if a localized 
electron were perfectly effective in shielding the nucleus 
(U—F), and if the density of states were very large, 
then 2N would be very nearly 1. This is evident since, 
then, Eq. (35) would define a straight line of very small 
slope intersecting the axis of ordinates at Z/2. In actual 
fact, as this example shows, because of exchange and 
imperfect shielding, there is a tendency for an excess of 
electrons to accumulate around a positive valence im­
purity. Both of these effects are absent from theories 
based on Poisson's equation and the Thomas-Fermi 
approximation or the Born approximation. This excess 
charge must be compensated by a spreading out of the 
perturbation to atoms adjacent to the impurity, which 
we discuss below. If / were not greatly reduced by 
correlation, or if U were equally reduced, the tendency 
of the perturbation to affect sites at a distance from the 
impurity atom would be exaggerated. This is contrary 
to the general experimental e\idence that impurities in 
J-band metals are shielded almost entirely at the im­
purity site. 
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FIG. 3. Solution for the self-consistent potential for two bands 
with a i = — l, 7n;i(E/)=0.5, ai—ly ir^E/) =0.5, and other 
parameters as in Fig. 2. 

Let us consider next in what way the above results 
would be affected by the presence of another band. For 
simplicity, we choose the second band to have the same 
density of states T7j(Ef) = 0.5 but to have a = l . This 
band then also has a width of 1 eV but is f filled. If we 
chose K—J again for convenience, and name the two 
bands 1 and 2, it is clear from Eq. (14) that 

VX=V*= -ZF+(2U-J)(N1+N2). (40) 

Since we have chosen ini(Ef) to be the same for both 
bands, we can find Ni and N2 from the construction 
shown in Fig. 3, where the self-consistent potential is 
marked by the line A and is chosen so that Ni and iV2 
add up to the value of N for which line A intersects 
Eq. (40). We now have 2^1=1.12 electrons and 
2iy2=0.32 electron for a total accumulation of 1.44 
electrons, a somewhat larger number than resulted 
from the presence of only one band. 

Finally, let us examine how the excess charge at the 
impurity site will affect its neighbors. With reference to 
Eq. (20), we suppose R=2 A and neglect the small 
interatomic exchange effect by placing j=0. If a0 is the 
Bohr radius, »/m# equal to 0.529 A, e*/a0=27.2 eV. 
Therefore, the direct potential at the nearest-neighbor 
site is v=(27.2)(0.529/2)(0.44)-3.15 eV. We have 
7r£(£/) = 1.0 states/eV atom, and find then from Eq. 
(23) that there is an accumulation of 0.15 holes on each 
neighbor. These holes react back on the central atom 
but have a small effect in comparison to the original 
perturbation of 30 eV. In this approximate sense, the 
behavior of the complex is consistent with the original 
assumption that the perturbation is small except at the 
impurity site. The self-consistent potential at each near-

neighbor site is 0.48 eV and is much smaller at the next-
nearest-neighbor site. Since we are using the Thomas-
Fermi assumption N~ — rj(Ef)V, it is clear that the 
perturbation decreases essentially exponentially away 
from the impurity site with the characteristic Thomas-
Fermi shielding constant 

[87T6 2 E>?n(£ / ) ] 1 / 2 . 

b. Condition for Magnetization 

In this section, we discuss the conditions under which 
an impurity in a metal will magnetize. We begin again 
with a single band. Equation (14) can then be written 
in the form 

h(Vt+ Vi) - -ZF+ (2U-J)i(Nt+Ni), (41) 

( 7 t - n ) = - / ( t f t - A ^ ) . (42) 

These equations must now be solved simultaneously 
with Eq. (16) to find Ft, Vi, Nt, and TV*. It is clear 
from Eqs. (41) and (42) that these solutions can be 
found from the following construction. N as a function 
of Tr)(Ef)V is first plotted from Eq. (16). Next draw a 
straight line on the plot with slope — \/ini(Ef)J. If this 
line intersects the curve at two points (iYt,Ft) and 
(Ni,Vi), these values satisfy Eq. (42). Next displace the 
straight line until the average of the two points 
Zl/2(Nt+Ni), l /2 (F t+F*)] lies on the straight line 
going through the axis of ordinates at ZF/(2U—J) 
with slope l/[Trr)(Ef)(2U—/)]. The two intersections 
then satisfy both Eqs. (41) and (42). An example is 
shown in Fig. 4. Here we have chosen Trj(Ef) = 3, Z = | , 

7T77(Ef)V 

FIG. 4. Solution of the self-consistent problem in a case giving 
stable magnetic solutions at B and an unstable, nonmagnetic 
solution at A. Drawn for F=30 , t /=20, 7 = 2 , < * = - l , Z = J, 
TTT}(E/)~3. See text for details of construction. 
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ELECTRON CONCENTRATION 

FIG. 5. Magnetic moment as a function of electron concentration 
for 1% of Fe in various Ad transition metal alloys from Ref. 6. 

a = - l , iP-30 eV, tf=20 eV, and 7 - 2 eV. The 
unstable nonmagnetic solution is shown at A, while the 
stable magnetic solutions are at the points marked B. 
The unstable solution corresponds to 2iV=0.78 elec­
tron. The magnetic solution gives (Nt+Ni) — 0.75 
electron and (Nt—Nt) = 0.65 Bohr magneton. It is 
obvious from the construction that the condition for a 
magnetic solution to exist is that 

or simply 
-dN/d(irrj(Ef) V)> \/<wi)(Ef)J (43) 

-dN/dV>l/J. (44) 

From Eq. (16), we have 

-icdN/d(ini(Ef)V). 

= {Za(TV(Ef)V)-iy+(Trri(Ef)Vy}-\ (45) 

so that the condition for instability can also be written 

rj(E/)J> la(irV(Ef) V)-1]2+ (irri(Ef) Vf. (46) 
This is a more general form of the condition found by 
Anderson4 and Wolf5 and reduces to their condition 
when a sharply defined local state exists. The right-hand 
side of condition (46) has a minimum value of 1/(1 +a2) 
for (wTi(Ef)V)=a/(a2+l), corresponding to a maxi­
mum value at this point of dN/d(irr)(Ef)V), equal to 
-(lAXl+o2). 

A very important application of Eq. (46) can be 
made to impurities for which Z=0, an example of which 
is Fe dissolved in Ru. In this case, 7 = 0 , and the condi­
tion is simply 7j(Ef)J>l for magnetization. This con­
dition remains true even if several bands are involved. 
Suppose that a fraction x of the density of states is 
contributed b> the dominant band and a fraction (1 —x) 
by all other bands. Then it is clear from Eq. (32) that the 
condition becomes xi)(Ef)J/[\—J(l—x)??(£/)]> 1 or 
v(Ef)J>l. 

Now, Fe in Ru is not magnetic, and we know that 
*?(£/) = 0.44 states/atom/eV,13 so that J<2.3 eV, in 

this case. Similarly, Co in Rh is not magnetic.14 Since 
rj(E/) for Rh is 1.0 states/eV/atom, we conclude that / 
for Co is less than 1 eV. Ni is magnetic in Pd but is non­
magnetic in Pt.14 We have r}(Ef) for Pd and Pt equal to 
1.97 and 1.36 states/eV/atom, respectively. Hence for 
nickel, 0.51 eV</<0.74 eV. 

c. Knight Shift 

Considering a single b a n d of electrons, the K n i g h t 
shift of an impur i t y a t o m can be wri t ten 1 5 

k=(8T/3)xV\*E/(0)\ (47) 

where x is the susceptibility per unit volume of the 
crystal and is not affected by a single impurity. We 
approximate ^Ef(0) by its component in the central 
Wannier function so that 

87T 
k=—xtt\W(0)\2 

3 

8TT 
= — X V \ W ( Q ) \ 2 

3 

X 

1+VGE(0) 
(48) 

Ef 

1 

Za(TV(Ef)V)-lJ+(MEf)Vy\ 
(49) 

Then the Knight shift can be written 

8TT r diV 1 
k=—xV\W(0)|2 -7T . (50) 

3 L d(T7j(Ef)V)J 

Let us set \W(0) | 2 = |$(0) |2£, where <£>(0) is the wave 
function of a valence electron of the impurity atom, and 
£ is a correction factor for a given solvent. We have, 
then, 

8TT r dN n 
£=_ x S2 |<l>(0) i 2 d - 7 T . (51) 

3 L d(jrn(Ef)V)A 

In the usual discussion of Knight shift in alloys, the 
factor in square brackets is ignored. Referring to Fig. 2, 
for example, this factor is just — w times the slope of the 
curve at the point A for a given self-consistent poten­
tial, and can vary over a wide range. In particular, for 
large \Z\, the stable intersections are at large positive 
or negative values of the abscissa, where the slope is 
small and the Knight shift should be greatly reduced. 
An example of this effect may be offered by the case of 
vanadium dissolved in palladium,16 where it is observed 
that the Knight shift of the V nucleus does not reflect 
the temperature-dependent susceptibility of the Pd 
solvent. 

18 R. H. Batt and N. E. Phillips quoted in T. H. Geballe, Rev. 
Mod. Phys. 36, 134 (1964). 

14 R. M. Bozorth, D. D. Davis, and J. H. Wernick, J. Phys. Soc. 
Japan 17, 112 (1962). 

16 C. H. Townes, C. Herring, and W. D. Knight, Phys. Rev. 77, 
852 (1950). 

18 V. Jaccarino, J. A. Seitchik, and J. H. Wernick (private 
communication). 
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0.4 0.6 0.8 
ENERGY IN RYDBERGS 

FIG. 6. Density of states and integrated state density as a 
function of energy for nonmagnetic bcc iron as calculated by 
J. H. Wood. 

d. Fe in the bcc Second-Row Transition Metals 

As an approach to a semiquantitative application of 
the ideas considered in previous sections, we now discuss 
in more detail the case of iron as a very dilute impurity 
in the body-centered-cubic 4d transition metals. When 
dissolved in these metals, iron sometimes exhibits a 
magnetic moment and sometimes does not. The mag­
netic moment as observed by a measurement of 
paramagnetic susceptibility is a smooth function of 
electron concentration, as shown in Fig. 5 adapted from 
Ref. 6. Proceeding in the direction of increasing electron 
concentration, a magnetic moment first appears at 
Nbo.eMoo.4 and rises to 2.1 fxB at Mo. The bcc phase is 
maintained to Moo.eReo.4. Beyond this point the 
hexagonal phase sets in and the moment decreases, 
becoming zero in Tc and Re and remaining zero through 
Ru. The dotted line represents measurements taken 
with alloys of Mo and Rh. 

The band structure of nonmagnetic bcc Fe has been 
calculated by Wood,17 using the augmented plane-wave 
method. His density-of-states curve is reproduced in 
Fig. 6, along with the integrated curve giving the 
number of states below energy E. The double-peaked 
shape of the band is characteristic of the body-centered-
cubic metals. The upper part of the band contains ap­
proximately two states per atom and is derived largely 
from the d states of eg symmetry. 

We adapt this band structure to our use as follows. 
First, the upper part of the band is represented by two 
superimposed Lorentzian bands of width A=0.0254 Ry 

centered at 0.76 Ry and having a peak density of states 
equal to 12.5 states/Ry. These superimposed bands are 
shown in Fig. 7, together with a smoothed curve repre­
senting the remaining state density in Fig. 6. This 
remaining state density is derived largely from states of 
hg symmetry lying below 0.7 Ry and from an s-like band 
contributing roughly 1.5 to 2 states/Ry-atom. For iron 
there are 8 electrons per atom. The Fermi level then lies 
at the point where the integrated-state density curve 
crosses 4 states/atom, or at 0.76 Ry, where we have 
located the center of the Lorentzian bands. 

Secondly, the band structure of iron must be adapted 
to the 4d series of metals. Following recent work of 
Mattheiss,18 we do this by increasing the energy scale by 
a factor of 1.48 and decreasing all state densities by a 
factor of 0.676. For a body-centered-cubic form of Ru 
(so far unknown), the Fermi level would lie at the peak 
of the expanded Lorentzian bands in this model of the 
band structure. Suppose now we make the rigid-band 
assumption. As Tc(Re) is alloyed into Ru, the Fermi 
energy decreases. I t further decreases in the alloys of 
Mo and Tc(Re), and for alloys of Nb"and Mo. A mini­
mum is found in experimental measurements19 of specific 
heat for these alloys near Mo, corresponding to the 
minimum in state density for 6 electrons at 0.68 Ry, 
shown in Fig. 6. 

We now measure energies 8Ef from the peak of the 
Lorentzian bands. If in a given alloy the Fermi level is 
a distance bEf from the peak, we have, from Eq. (39), 
a — bEf/A. In this alloy, iron then appears as an im­
purity with a valence difference 8Z which is twice the 
number of states per atom through which the Fermi 

a. 
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FIG. 7. Smoothed density of states for upper and lower parts of the 
band for bcc nonmagnetic iron adopted from Fig. 6. 

17 J. H. Wood, Phys. Rev. 126, 517 (1962). 

18 L. F. Mattheiss (private communication). 
19 F. J. Morin and J. P. Maita, Phys. Rev. 129, 1115 (1963). 
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FIG. 8. Solution of the self-consistent potential for Fe in bcc Ru. 
F = 30, J7 = 20, / = 2 , 5Z = 0, o! = 0. Stable magnetic solutions are 
a t B . 

level has dropped proceeding from Ru. Using Fig. 6, one 
can then construct Table I, which gives, for various 
values of a, bEf in electron volts, 5Z, the density of 
states r\ (Ef) for each Lorentzian band in states/eV-
atom, and the total smoothed density of states {(£/) for 
all bands. 

In the calculation which follows, we assume that the 
two superimposed Lorentzian bands (bands 1 and 2) 
behave exactly alike so that Nff = Ni<r=N2<r* We also 
assume that these two bands dominate the self-con­
sistent shielding of the impurity atom. Proceeding as in 
Sec. lie, we find 

i(#t+#*) = 
F8Z l+p(2U-J) 

2(217-7) 2(2U-J)wr)(Ef) 

Xrri(Ef)$(yY+Vi), (52) 

1-07 

TABLE I. Parameters used in impurity calculation for Fe in the 
4d transition-metal alloys. 

a 

0 
4 

-i 3 

- 1 

- t - 2 
- 3 
- 4 
- 5 
- 6 

bEf 
eV 

0.00 
-0 .13 
-0 .26 
-0 .38 
-0 .51 
-0 .77 
-1 .02 
-1 .53 
-2 .04 
-2 .55 
-3 .07 

5Z 

0.00 
0.30 
0.50 
0.65 
0.80 
1.25 
1.65 
1.95 
2.15 
2.45 
2.85 

v&f) 
states/eV-

atom 

0.622 
0.585 
0.497 
0.398 
0.311 
0.191 
0.124 
0.062 
0.036 
0.024 
0.016 

*(£/) 
states/eV-

atom 

1.34 
1.34 
1.10 
0.90 
0.73 
0.50 
0.38 
0.28 
0.27 
0.34 
0.76 

:. TABLE II. Constants used in finding self-consistent potential for 
Fe impurity in Ad transition-metal alloys. F = 30 eV, U=2Q eV, 
/ = 2 eV, /3=0.1 states/eV-atom. 

a 

0 
1 
4 I 
2 
3 
4 

- 1 
3 
2 

- 2 
- 3 
- 4 
- 5 
- 6 

F8Z/2(2U-J) 

0.000 
0.118 
0.197 
0.257 
0.316 
0.493 
0.652 
0.769 
0.848 
0.967 
1.125 

1+0(217- / ) 

2(2U-J)mi(Ef) 

0.0323 
0.0344 
0.0405 
0.0505 
0.0646 
0.1052 
0.1620 
0.324 
0.552 
0.845 
1.200 

1- /3 / 

2JME/) 

0.102 
0.109 
0.128 
0.160 
0.205 
0.334 
0.514 
1,025 
1.740 
2.67 
3.79 

where the sum on I is over all active bands except bands 
1 and 2 and 0=X) 1 Vi(^f) as before. In the present case, 
we suppose that the 4d subbands in the lower part of 
the band are so nearly filled in all cases that they con­
tribute very little to the shielding of the impurity. We 
take 0, therefore, equal to the s-band state density, 
which is approximately 0.1 state/eV-atom. As before 
we take F=S0 eV, Z7=20 eV, and 7 = 2 eV. The con­
stants appearing in Eqs. (52) and (53) for various 
values of a can then be calculated and are listed in 
Table II. 

The solution of the self-consistent problem presented 
by Eqs. (52) and (53) can be found graphically, as is 
done in Sec. Illb. Examples of these graphical solutions 
for a=0 , — 1, —3 are shown in Figs. 8, 9, and 10. The 
values of Na and Va found in this way are listed in 
Table III. From equation (54) we can obtain J^iNi*, 
and this is also listed in Table III. Finally, we are 
interested in the polarization induced on the nearest 
neighbors to the impurity. This can be obtained from 
Eqs. (20) and (24), where we assume that a reasonable 

(Nt-NO^ 

I 

- wT,m(vt-vi), 
2Jvri(Ef) 

-pv„ 

(53) 

(54) 

1.0 
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0.4 

N 0.2 
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-0.2 

-0.4 h 

r -,* 
L a = -i N ^ V . 

1 1 1 J 1 

\ 
^N^JL 

1 1 L L 

7T77(Ef)V 

FIG. 9. Solution of the self-consistent potential for Fe in bcc 
Tco.gRuo.g. 5Z = 0.8, a== — 1, other parameters as in Fig. 8. Stable 
magnetic solutions are at B. 
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TABLE III. Polarization in Bohr magnetons of the central impurity atom and of the nearest-neighbor atoms as calculated for Fe dissolved 
in various 4d metal alloys, j=0.2 eV. 

a 

0 
1 
4 1 
2 
3 
4 

- 1 
3 
2 

- 2 
- 3 
- 4 
- 5 
- 6 

Nit 

0.42 
0.51 
0.58 
0.64 
0.69 
0.76 
0.79 
0.83 
0.84 
0.85 
0.85 

Na 

-0.42 
-0 .34 
-0 .26 
-0 .21 
-0 .16 

0.00 
0.26 
0.37 
0.48 
0.60 
0.85 

*v(Pf)Vt 

-4 .03 
-4 .75 
-4 .23 
-3 .55 
-2.92 
-2.32 
-1 .37 
-0 .74 
-0 .46 
-0 .33 
-0 .25 

ME/)Vi 

4.03 
3.15 
2.35 
1.77 
1.24 
0.00 

-0 .34 
-0 .30 
-0 .25 
-0 .20 
-0 .25 

2(Nn-Nn) 

1.68 
1.70 
1.68 
1.70 
1.70 
1.52 
1.06 
0.92 
0.72 
0.50 
0.00 

2 Nit 
i 

0.21 
0.26 
0.27 
0.28 
0.30 
0.38 
0.35 
0.38 
0.40 
0.44 
0.47 

2 iVu 
i 

-0 .21 
-0 .17 
-0 .15 
-0 .14 
-0 .13 

0.00 
0.09 
0.15 
0.22 
0.27 
0.47 

2(Nt-Ni) 
2 (Nit-Nu) + 2 ( t f i t -
i 

0.42 
0.43 
0.42 
0.42 
0.43 
0.38 
0.26 
0.23 
0.18 
0.17 
0.00 

i 

2.10 
2.13 
2.10 
2.12 
2.13 
1.90 
1.32 
1.15 
0.90 
0.67 
0.00 

Na) S2(Nmt'~Nmi 
m 

4.50 
4.57 
3.70 
3.05 
2.49 
1.52 
0.80 
0.52 
0.39 
0.36 
0.00 

Total 
0 mo­

ment 

6.66 
6.70 
5.80 
5.17 
4.62 
2.42 
2.12 
1.67 
1.29 
1.03 
0.00 

value for j is 0.2 eV and take / ' = 0 . For the neighbors 
we take %{Ef) to be the total density of states, since the 
potentials are so small at the near-neighbor sites that 
all bands contribute. The total polarization contributed 
by the 8 near neighbors is listed in Table I I I as 
8£m( iVm t ' - iV r

w*')- Table I I I shows, finally, the total 
moment associated with the impurity complex. 

The principal results of the calculation are shown in 
Fig. 11, which gives the moment on the impurity atom 
and the total moment of the complex as a function of 
the valence difference of the impurity. These results 
may be compared with the experimental facts shown in 
Fig. 5. Considering the many uncertainties of the 
theoretical model, the agreement is quite satisfactory. 
To the left of the bcc-hcp boundary, where the com­
parison can be made, the model predicts a total moment 
of about 2 MB, as is observed. As hZ increases, the mo­
ment decreases and goes to zero at about the same alloy 
composition as found experimentally. The model does, 
however, predict a less precipitous decrease of the 
moment in the alloys near Mo than is found for the 

1.2 

0.8 k-

N 0.4f-

- 0 .4 

! OL = - 3 \ 

\~A 
1 1 I I 1 

^ 

l 1 1 1 1 
-1 O I 
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measured moments. The slope of the curve in this 
region is rather sensitive to the choice of parameters and 
could be made to resemble the experimental curve more 
closely by a somewhat different choice of the exchange 
constant / and the s-band density of states {$. One of the 
most important conclusions to be drawn from the 
calculation is that a reasonable description of the ex­
perimental results can be made using an exchange con­
stant no larger than 2 eV. I t is clearly not necessary to 
have / as large as 10-20 eV in order to maintain a 
magnetic moment in these alloys. 

I t is interesting to note the rather substantial differ­
ence that exists between the moment that resides on the 
central impurity atom alone and the total moment of 
the complex of impurity atom and its near neighbors. 
In the case of molybdenum (5Z= 2), these moments are 
approximately 1.5 MB and 1.1 MB in our calculation. 
Experimentally, the total moment is observed to be 
2.1 MB 6 and the density of states to be19 0.42 state/eV-
atom. (This value is probably enhanced by electron-

MOMENT ON 
IMPURITY 

FIG. 10. Solution of the self-consistent potential for Fe in 
bcc Moo.95Tco.05. 6Z=1.95, a =—3, other parameters as in Fig. 8. 
Stable magnetic solutions are at B. 

-<Tz 

FIG. 11. Calculated magnetic moment as a function of valence 
difference for iron dissolved in various bcc Ad transition metal 
alloys. 

Moo.95Tco.05
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phonon interactions.) The moment resident on the 
central atom would then be 1.2 JUB, assuming once more 
that i = 0 . 2 eV. This discrepancy between the impurity 
moment and the total moment may account, in part, for 
the results of Mossbauer-effect measurements made on 
Fe dissolved in Mo which show an unexpectedly small 
hyperfine field at the nucleus of the iron atom.20 

In carrying out this calculation, one very important 
feature has emerged. That is the rather profound effect 
produced upon the self-consistent problem by the shield­
ing due to the s-band density of states. If ff is taken 
equal to zero in Eqs. (52) and (53), no self-consistent 
magnetic moment can be maintained beyond about 
8Z=2, and agreement with experiment would be rather 
poor. 

Finally, we should like to remark on the results ob­
tained to the right of the bcc-hcp boundary which relate 
to a group of hypothetical bcc alloys. If these alloys 
could be experimentally obtained in bcc form, the 
theory predicts that iron would exhibit a magnetic 
moment in dilute solution all the way to Ru or §Z=0. 
Furthermore, it is predicted that the total magnetic 
moment would become large in these alloys, approaching 

20 P. P. Craig, D. E. Nagle, W. A. Stegert, and R. D. Taylor, 
Phys. Rev. Letters 9, 12 (1962). 
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6.5 /*B near Ru. This occurrence of giant moments is a 
familiar effect observed in alloys near palladium.6 

Note added in proof. In connection with the discussion 
in Sec. I l l b , it is worth noting that the Stoner criterion 
for the instability of the Fermi ground state against 
separation into two spin bands is also T\(Ef)J> 1. Thus, 
since Fe is a magnetic metal, following the discussion 
in Sec. I l l b it must also be possible to find Hartree-
Fock states where a single atom is magnetic, although 
such a state would have a higher energy than the com­
pletely magnetic state. I t would seem reasonable to 
suppose that such local magnetic states could be used 
to describe approximately the condition of iron above 
its Curie temperature of 1043 °K. With an exchange 
energy of 1 eV and a moment per atom of about 2 
Bohr magnetons, the local magnetic moments should 
be stable to temperatures much higher than the Curie 
temperature. 
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